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Abstract 

In this work, a new type of boundary condition for time-accurate Computational 
Aeroacoustics solvers is described. This boundary condition is designed to complement 
the existing nonreflective boundary conditions while ensuring that the correct mean flow 
conditions are maintained throughout the flow calculation. Results are shown for a 
loaded 2D cascade, started with various initial conditions. 
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(CAA) is concerned with the time-accurate 
calculation of unsteady flow fields. 
Theflow problems of interest can be 
divided into two types: initial-value, and 
long-time unsteady problems. In an initial- 
value problem, the initial flow solution is 
known exactly, and the computation is 
focused on obtaining a time-accurate 
unsteady solutio throughout the 
calculation. In a long-time unsteady 
problem, the initial flow field is not 
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correctly specified, and the solution must evolve 
over time until it converges to the long-time 
unsteady flow. 

It is relatively rare to solve an initial-value flow 
problem, mainly because the initial solution must 

In the first phase, an initial flow solution is 
specified; since this is generally not the correct 
long-time solution, the flow evolves through a 
transient phase before converging to a long-time 
unsteady solution. During the transient phase, the 
goal is to converge the flow to the long-time 
unsteady solution rapidly; thus the transient 
computation need not be highly accurate in time. 

Once the flow has converged to the long-time 
unsteady solution, the second phase of the 
computation begins. Here, the desired unsteady 
flow data is gathered; thus, a highly time-accurate 
calculation is desired. The data gathered in this 
phase is the desired output for the flow simulation. 

The boundary conditions used for each phase of 
the calculation should be chosen to achieve the 
goals of each phase. Currently, nonreflective or 
damping boundary conditions are used for most 
CAA calculations.' These conditions are designed 
to allow outgoing disturbances to exit the 
computational domain without generating either 
real or spurious incoming disturbances. These 
conditions are ideal for either an initial-value 
computation or the data-gathering phase of a long- 
time unsteady computation, when the flow 
solution correctly represents the desired mean 
flow. 

However, these nonreflective boundary conditions 
have no mechanism for maintaining a desired 
mean flow when implemented in a nonlinear flow 
solver. In the initial transient phase, large 
disturbances may propagate through the boundary 
and exit the domain. These disturbances affect the 
flow solution at the boundary, and the correct 
method to 'reset' the flow at the boundary is to 
impose an incoming disturbance originating 
outside of the computational domain. 

Notice that in this work, the mean flow boundary 
condition (MFBC) does not act on the 

be exactly specified. On the other hand, many 
realistic flow problems can be classified as long- 
time unsteady. Unlike an initial-value problem, 
where the entire calculation must be highly 
accurate, the long-time unsteady flow calculation 
can be divided into two distinct phases. 
instantaneous flow solution at the boundary; 
instead, it acts on the time-averaged mean flow at 
the boundary. In this way, the instantaneous 
outgoing waves that do not affect the mean flow 
will not be reflected. 

Governing Equations and Numerical Method 

In this work, the Euler equations are solved. The 
2D nonlinear Euler equations may be written in 
Cartesian form as: 

Q + E + F  = O  (1) 
t X Y  

The NASA Glenn Research Center BASS code 
was used to solve this The BASS 
code uses optimized explicit time marching 
combined with high-accuracy finite-differences to 
accurately compute the unsteady flow. The code 
is parallel, and uses a block-structured curvilinear 
grid to represent the physical flow domain. A 
constant-coefficient 10" order artificial dissipation 
model6 is used to remove unresolved high- 
frequency modes from the computed solution. 

The BASS code solves the Euler equations using 
the nonconservative chain-rule formulation; 
previous experience has indicated that the formal 
lack of conservation is offset by the increased 
accuracy of the transformed  equation^.^.^ The 
chain-rule form of the Euler equations are: 

Q, + E t  Q ,  + q f  Q ,  

+ E x E , + q  E ,  

+ E  F , + q  F,=O 
Y Y 

For this work, the optimized low-storage RK56 
scheme of Stanescu and Habashig was combined 
with the prefactored sixth-order compact 
differencing scheme of Hixon". 



Boundarv Condition Formulation 

- ( Q l ) b o u n d a r y -  

At the inflow and outflow boundaries of 
the computational domain, boundary 
conditions must be specified. These 
boundary conditions should, at a minimum, 
maintain the desired mean flow, be 
nonreflective for transient waves that do 
not affect the mean flow, and introduce any 
user-specified incoming disturbances. To 
accomplish these goals, the time derivative 
of the flow at the boundary is decomposed 
into three parts: 

Next, the desired mean flow conditions 
must be specified. For this problem, the 
desired conditions are specified in terms of 
the inflow stagnation temperature and 
pressure, the inflow angle, and the outflow 

(et),,,, 
+ (Q,) incoming 

+ Q, nonreflective - J 1 

The mean flow boundary condition is 
formulated in this way. First, the mean 
flow must be defined. The mean flow is 
simply the flow variables integrated over a 
given length of time, T: 

f 

Q T =  Q d t  (4) 
I - T  

Thus, the mean flow integration can be 
performed using the same time integration 

Thus, there are three components to the Finally, the mean flow boundary condition 
boundary conditions. The first component must be defined. TO accomplish this, the 
(MFBC) maintains the desired mean flow. 1-D characteristics of T h o m p ~ o n ’ ~ , ’ ~  are 
The second component (incoming) used, modified for an arbitrary rotation of 
introduces any user-specified disturbances. the grid boundary: 
The third component (nonreflective) is 
nonreflective to transient waves. A A~ = (A  p ) -  ?*(A p )  
The nonreflective boundary condition used 
in this work was the Giles inflow and 
outflow conditions.” This boundary 
condition has been previously tested on a 
benchmark flat plate cascade with 
acceptable  result^.^ 

The incoming gust specification boundary 
condition is also implemented in the BASS 
code, though it was not used for this test. 
This condition is simply designed to 
remove the incoming gust disturbances 
from the Giles condition calculation, and 
then add the time derivative of the gust 
components in at the inflow boundary. 
This condition has been previously 
validated.’** 

A A ~ = ( A V . ~ )  
A A ~ =  (A  p ) + p z ( d  V a n )  

( 5 )  

A A~ = ( A  p )  - p z ( d  V . n )  

Here, the “n” vector is normal to the grid 
boundary, while the “m” vector is tangent 
to the grid boundary. 

At each boundary point, a ’ target’mean 
flow is defined; the object of the mean flow 
boundary condition is to obtain the ’ target’ 
mean flow. At the inflow boundary, the 
current mean flow error can be defined as: 



- A E = E  --o( 
larger currenl 

[ B ]  

Given that the error in the current mean flow is 
known, then the incoming characteristics that will 
correct this error can be calculated. At a subsonic 
inflow boundary, this results in a 4 x 4 matrix: 

A A 2  

A A  

A A  
3 

4 

A Po 

0 
A T  

A h  

0 

where 

r 

(7) 

1 
" 0  I 

---- I 6 ( A 1 )  6 ( A 2 )  & ( A i )  6 ( A 4 )  I 
l 1  

0 0 

(8) 
l o  

Since the fourth characteristic is outgoing, it 
cannot be modified. 

For the outflow boundary, The development is 
similar. Here, the matrix equation becomes: 

where 

kl= 
1 0 0 0 

0 1 0 0 

0 0 1 0 

In constrast to the inflow boundary, now the first 
three characteristics are outgoing, and cannot be 
modified. 

Once the modifications to the characteristics are 
known, the necessary modifications to the flow 
variables may be calculated as: 

A Q =  

Finally, the mean flow boundary condition is 
written as: 



The value of CT used in this work was 1.0. 
Initially, much higher values of CT were 
used, in an attempt to converge the mean 
flow solution more quickly. However, it 
was found that instabilities occurred during 
the first phase of the calculation, when very 
large transients were exiting the 
boundaries. In future work, a variable CT 

will be tried, where the value of CT is 
initially low to allow the large transients to 
leave the domain and then is increased in 
order to more quickly converge the mean 
flow solution. 
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Test Problem and Flow Initialization 

1 0.95 36 0.92 

1 1 36 0.85 

The test problem chosen represents the 
type of flow problem that the BASS code is 
designed to solve. In this problem, the 
mean flow about a loaded 2D cascade is 
calculated. The cascade geometry is given 
in Ref. (1 1). The mean flow conditions at 
the inflow are: 

- p =1.0 
0 - 

T 0 =1.0 (13) 

E =  36" 

At the outflow, 

(14) 
- p = 0.92 

In the full problem, which is a benchmark 
problem for the 4'h Computational 
Aeroacoustic Workshop on Benchmark 
Problems, three simple-harmonic gusts are 
introduced at the inflow boundary. For this 
work, the gusts are neglected; in future 
work, the gusts will be included in the 
calculation. 

In order to run the a time-marching flow 
code, an initial flow condition must be 
specified. For this work, seven initial 
conditions were used, in which the flow is 
uniform throughout the computational 
domain. These seven initial conditions are 
referred to as Tests 1-7, as defined in Table 
1. To validate the mean flow boundary 
conditions further, an additional four tests 
were run in which the initial condition of 
Test 1 was used and the desired mean flow 
conditions were varied. These cases are 
referred to as Tests 8-11, as defined in 
Table 1: 

Table 1: Flow Test Cases 

1 1  1 1  1 1  1 3 6 1 0 . 9 2  i' 
4 1 1 40 0.92 

5 
0.92 

1 9 1 0.95 I 1 I 36 I 0.92 

The first seven test cases given in Table 1 
were run to test the ability of the MFBC to 
obtain the correct mean flow while starting 
from different initial conditions. For 
comparison, these cases were also run 
without the mean flow boundary condition. 

Figures 1-7 show the convergence histones 
of each mean flow variable at one point on 



the inflow and outflow boundaries for each test 
case. Each figure compares the mean flow 
obtained both with and without the MFBC 
enabled. It is clearly seen that the mean flow is 
not remaining constant through the run, and the 
effect of the MFBC is to bring the computed flow 
to the correct mean values. Also, the 
convergence to the mean flow as the run 
progresses is shown. This is very important, as it 
indicates that the MFBC is only active during the 
initial transient portion of the code run. 

Another important point is that the MFBC was 
used in conjunction with the Giles nonreflective 
boundary condition; the results show the utility of 
using both a mean flow and an instantaneous 
nonreflective boundary condition. 

The final four tests (Tests 8-1 1) were designed to 
investigate the ability of the MFBC to obtain 
different desired mean flows while starting from 
the same initial condition. Figure 8 illustrates the 
time history of the four runs, and the final mean 
flows are those given in Table 1. 

Conclusions and Future Directions 

In this work, a mean flow boundary condition for 
time-marching unsteady calculations was 
developed. The initial tests showed the 
effectiveness of this boundary condition; the mean 
flow converged to the correct conditions 
regardless of the initial flow condition. This will 
be a useful addition to any nonlinear unsteady 
code using nonreflective boundary conditions, 
since these nonreflective boundary conditions do 
not automatically maintain the desired mean flow. 

In future, the user-input unsteady gust will be 
added to the flow, and a full unsteady nonlinear 
calculation will be performed. This will provide 
the final test for the mean flow boundary 
conditions. 
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Figure 1: Mean Flow Test Case 1 

Figure 2: Mean Flow Test Case 2 
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Figure 3: Mean Flow Test Case 3 
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Figure 4: Mean Flow Test Case 4 
Figure 7: Mean Flow Test Case 7 
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Figure 5: Mean Flow Test Case 5 
Figure 8: Mean Flow Test Cases 8-11 
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Figure 6: Mean Flow Test Case 6 


